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SUMMARY : A new approach to the characterization and presentation of the
conduction transient heat transfer system is introduced. A new term, the temperature
response parameter, f, that has the unique property of incorporating body and system
transient heat transfer properties into a single term is described and its use demonstrated.
Generally, when the Fourier number ra/R?2 is greater than 0.3 the aperiodic cooling
curve can be described by the first term approximation and the proposed method of
presentation has the advantages of suggesting the power of proportionality of the
parameters with respect to the heat flow.

Corrélation et prévision des faux de fransmission de chaleur, en régime variable,
dans les produits alimentaires.

RESUME : On présente une nouvelle étude sur la définition et la représentation du
systéme de transmission de chaleur en régime variable. On décrit un nouveau terme,
le paramétre de réponse a la température, f, qui a la particularité de représenter & lui
seul les propriétés de transmission de chaleur, en régime variable, d'un corps et d’'un
systéme et on précise son utilisation. En général, lorsque le module de Fourier ta/R2
est supérieur a 0,3, la courbe de refroidissement apériodique peut étre représentée par
le premier terme de la série et la méthode de représentation proposée a I'avantage de
suggérer I'exposant de proportionnalité des paramétres par rapport au flux de chaleur.

INTRODUCTION

There are five groups of variables that must be considered in the transient
heat conduction system ; the dimension parameter of the body, R, and the
position variable, r; the body properties—thermal conductivity, &, and thermal
capacitance, pC,; the external film coefficient, 4; the time, t; and the temperature
change of the body, (T, —T)/(T; —Tgp).

A transient heat conduction system usually consists of two basic thermal
resistances, the external resistance, 1/4, and the internal resistance, R/k. The
ratio of the internal to the external resistance, #R/k is the Biot number, Ng;.
The Ng,; is a positive number with limits between zero (no internal resistance-
Newtonian system) and infinity (no external resistance). The solution for the
extreme conditions is simpler than the solution for those cases where both
resistances enter into the calculations. We can afford to ignore the internal
resistance (i.e. Ng; = 0) when Ng; is less than 0.1 or to ignore the external
resistance (i.e. Ng; = 00) when Ny, is greater than 100 even though in practice
these extreme Ny, values of zero or infinity are never actually reached.

(*) Published with the approval of the Director of the Michigan Agiicultural Experi-
ment Station as Journal Article N” 3834,
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Many industrial and practical transient heat conduction problems deal
with the evaluation of temperature profiles. The information obtained from the
temperature profile can be used for predicting the process time, computing
the local or overall healing loads for instantaneous or integrated time, or
evaluating the thermal properties. This information may be used in many
other cases where prediction of a temperature dependent phenomenon is needed
such as in solidification and melting, microbial death and chemical reaction.
These aperiodic transient cooling and heating problems are typical of the
canning, metallurgical and glass industries. The most common case will be
that of a body initially at' a uniform temperature, T,, suddenly exposed to a
new constant temperature, T,. The boundary conditions are :

T="Ty at t=0 forallr
3—T=0 at r=20

9r

3T

-—ks—=h(T—T,) at r=R fort1=0
r

The exact solution for the three major one dimensional heat flow geometries,
infinite slab, sphere and infinite cylinder having the above boundary conditions
are listed in equations A-1, A-17 and A-9. There are a number of graphical
presentations such as charts of Gurney-Lurie, Hottel and Williamson-Adams
(McAdams, 1954) of equations A-1, A-9, and A-17 for practical use. Most of
these charts are plotted as (T, —T)/(T, —Tg) vs. the Fourier number, at/R?
with Ng; as the parameter, In the following sections we shall show a new
approach for the presentation of the above mentioned equations which in
certain cases has advantages over the conventional methods.

PRESENTATION OF THE METHOD

The exact solution for the infinite plate, the sphere and the infinite cylinder
(equations A-1, A-17 and A-9) all have the following form

Tl _ & o i
Wl PO T 1)
oo, & X

After enough time has elapsed the series type solution (equation 1), because of
its exponential nature, converges rapidly, and all the terms except the first
become negligible (equation 2)

Te=Ti . oodiind
= Jg (2
T, I
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Taking the logarithm of both sides of equation 2 we obtain equation 3,
, t i
log(T-T,) = —j.'i"loBJ(Tu"Tx) (3)

which produces a straight line if we plot log (T—T,) vs #. The parameters of
this line are :

— Bia 1
slope = ——— = -
Pe=2303R: [

intercept = log [j(To— Ty)]

j - Tn = Tl

To—T,
Equation 3 describes the asymptote or the straight line portion of the cooling
curve, generated when the logarithm of the difference in temperature of an
object, (T—T,), is plotted vs. time (fig. 1).

Température, F (T-T,)
-]

0 20 40 60 80
Time, min.

Fig. 1 — Cooling curve in convenient form for theoretical use, with temperature
scale expressed in degrees difference between processing temperature Ti and
temperature of product.

Figure 1 can be shown to be identical to the common transient heat transfer
charts mentioned above, where at/R? is plotted vs. (T—T,)/(Tg —T,), when

91



the abcissa is multiplied by @/R? and the ordinate divided by (T, —T,) both
of which are constants for the system.

Equation 2 which is the first term approximation of the series solution and
beyond a certain time is the actual cooling curve can be described by two
parameters, the temperature response parameter, f, the direction function, and
the j parameter which is the intercept function, The f of the straight line semi-
logarithmic cooling curve, is independent of the point of measurement since
the slope term does not contain a position variable. The j term, however, does
depend on location since it contains the position variable »/R. There are three
important j’s, center, surface and mass average.

geometric center Je =Jlr=o

surface Js =Jl=nr

mass average [ =

I

J m
- j Jj dm, where m = mass
mjo

The importance of the various j's is that once the straight line semi-
logarithmic heating curve is established we can determine the lowest (heating)
or highest (cooling) temperature of the body, the surface temperature and the
mass average temperature as a function of time by using j., /., and j,,
respectively.

The temperature response parameter is a very convenient practical term for
describing the transient system since by single term having a time dimension
we can describe a 90%, change in temperature difference on the linear portion
of the curve. This term incorporates the thermal properties of the body, its
geometric characteristic and the thermal properties of the external system, and
describes the transient heat conduction system just as the overall heat transfer
coefficient, U, describes the steady-state system, By dimensional analysis of the
temperature response parameter (Kopelman, 1966) it was shown that the system
can be described by two dimensional groups fo/R? and Ny;. Solutions for other
isotropic regular shapes may be obtained from those of the infinite slab and/or
the infinite cylinder for prescribed surface temperature or film coefficients and
the same initial and boundary conditions. Composite solutions are the product
of the respective individual direction solution (Carslaw and Jaeger, 1959) given
by equations A-1, A-9, and A-17, hence for a solid with three dimensional
heat transfer.

1 = 1 o i o 1 (4)
f composite f 1 f 2 f k1
jcomposlu ¥ j1j2j3 (5)

The curves in figures 2, 3, 4 and 5 are our method of presenting the first

term approximation solution and were shown with tables of values first by

92



Pflug er al. (1965). These figures relate the f and j with the system conditions
for the three major one dimensional heat flow geometries, the infinite slab,
sphere and the infinite cylinder. (As it was mentioned it is possible to combine
these data to make other solutions for other geometries.) Figure 2 relates the
ratio fa/R? for an infinite slab, sphere and infinite cylinder with the Biot
number, AR /k, Figures 3, 4 and 5 relate the lag factor j and the Biot number
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Fig. 2 — Npgj vs fu/R?2 for infinite slab, infinite cylinder and sphere.

for the infinite cylinder, sphere, and infinite slab; figure 3 for the center of the
object (j_); figure 4 for the point representing the mean temperature of the
object (j,); and figure 5 for the surface temperature (j;).

In the evaluation of the transient heat transfer system, where the system
properties are constant, we have two variables, time and temperature. These
two variables, time and temperature, appear in the conventional method of
presentation mentioned above. In our method, by definition, we incorporated
these two variables into a system property—the temperature response para-
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meter, f. Through the incorporation of these two variables into a system
property, we are able to describe the system as a function only of its properties.

In the conventional method of presentation where the unaccomplished
temperature change, (T-T,)/(T,—T,) is plotted vs. the Fourier number
ot/R2, a series of lines are generated for each parameter, for example Ny; and
position, r/R. For values of az/R? > 0.3 these lines are straight and practically
indicate a plot of first term approximation. When az/R? < 0.3 the lines curve
showing that first term approximation does not hold, Regardless of the fact that
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Fig. 3 — je vs Npy for infinite slab, infinite cylinder and sphere.

in this low Fourier number region we cannot accurately read (T —T)/(Ty—T,),
it is a marked advantage of these charts to be able to determine, by inspection,
whether or not we can use the first term approximation. In our method of
presentation, the figures are already based on the assumption that we are
dealing with the first term approximation, therefore we must make sure that
in our system sufficient time has elapsed so that this assumption is valid. On the
other hand, if the Fourier modulus exceeds 0.3, we believe that our method of
presentation has advantages, since we can determine which part of the system
is controlling by visual inspection of the charts. For example, by inspection of
figure 2 we can see that when the Ny; > 100 the lines of fa/R? vs.Np, approach
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an asymptotic value which suggests that fis inversely proportional to the thermal
diffusivity, directly proportional to the square of the characteristic dimension
and independent of the Ny; or the film coefficient £ Thus an attempt to improve
the performance of a high Ny, system by improving the film coefficient will
not be very successful. It is possible to significantly alter the response of the
body by changing the body characteristic dimension. On the other hand in
the low Ng; system (fig. 2) the curve becomes a straight line of slope = —1,
where the temperature response parameter is direcily proportional to the heat
capacitance pC, and the characteristic dimension, and inversely proportional
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Fig. 4 — jm vs Np; for infinite slab, infinite cylinder and sphere.

to the film coefficient h. We can summarize this example by saying that mathe-
matically speaking figure 2 shows that going from a high Ng; system to low Np;
system the power of proportionality of the characteristic dimension was
decreased from 2 to 1 while the power of proportionality of the film coefficient
was increased from O to 1. Similar analysis can be made with respect to the
relationship of j with respect to Ny; shown in figures 3, 4 and 5. Kopelman
(1966) did a complete analysis of the curves appearing in this presentation,
The ability to isolate the power of proportionality of the parameters with respect
to heat flow in the various Biot number regions is both important and convenient
in the design of an experiment or in the evaluation of the experimental data.
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EXAMPLE
A food productinslab form 2in. X 12in. x 12in.(5.08cm x 30.5¢cm x 30.5¢cm),
k =025 Btu/hr ft °F (0.372 kcal/hr m °C), specific gravity = 1.00,
C, = 0.8 Btu/lb °F (0.8 kcal/kg °C), is to be cooled from an initial temper-
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Fig. 5 — js vs Wpg; for infinite slab, infinite cylinder and sphere.

ature of 100°F (37.8°C) to 40°F (4.5°C) at the geomelric center, The object
can be cooled either by 35°F (1.7°C) cold water flowing along the surface at
60 ft/min (18.3 m/min), or by 30°F (—1.1°C) cold air flowing along the surface
at 600 fi/min (183 m/min). Calculate the time required to cool the product to
a center temperature of 40 °F (4.5 °C) and determine its mass average temperature
when the center reaches 40°F (4.5°C). Since the ratio between the length or
the width of the object to its thickness is 6:1, the heat flow will be practically
one dimensional and the object can be considered to be infinitely long in the
two other directions.

The film coefficient 4 for forced convection, over a flat plate can be calculated
using equation 7.41a from Rohsenow and Choi (1961). Under the stated
conditions the film coefficient is 2.31 and 110 Btu/hr ft2°F (1153 and
537 kealthr m*? °C) for the air and water, respectively. The respective Ny; are
0.77 and 37. From figures 2, 3, 4 and 5 we find that :
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fa/R?2 Je Jm
air 39 1.10 0.99
water 0.98 1.27 0.832

Solving for f we get an f value of 5.42 and 1.36 hr for the air and water,
respectively. Solving equation 3 for  using the appropriate j. we find that the
time required for the geometric center to reach 40°F (4.5°C) is 4.82 and 1.65 hr
for the air and water, respectively. Using the appropriate j,,, the mass average
temperature, T, is found to be 39°F (3.9°C) and 38.2°F (3.5°C) for the air
and water, respectively.

If we double the fluid velocity the corresponding film coefficient will be
increased approximately by 2°-% times. Repeating the calculations for this new
case will show that the corresponding f values will be 4.32 and 1.36 hr, and the
time required for the center to reach 40°F (4.5°C) will be 3.86 and 1.65 hr for
the air and the water, respectively.

LITERATURE CITED

CarsLaw, H.S. and JagGer, J.C. 1959. “Conduction of Heat in Solids™, 2nd Ed,
The Clarendon Press, Oxford.

KoreLMaN, 1.J. 1966. Transient Heat Transfer and Thermal Properties of Food
Systems. Ph. D. Thesis. Michigan State University, East Lansing.

McApams, W, H. 1954, “Heat Transmission”, 3rd Ed, McGraw-Hill Book Co., Inc.,
New York.

PrLug, 1.J., Braspeir, J. L. and KopeLman, 1.J. 1965, Developing Temperature-
Time Curves for Objects That Can Be Approximated by a Sphere, Infinite Plate
or Infinite Cylinder. AS H R A E Transaction, Yol. 71, Part I,

Ronsenow, W. M. and CHor, H. Y. 1961. “Heat, Mass and Momentum Transfer™.
Prentice-Hall, Inc., Englewood Cliffs, N.J.

NoOTATION

C,  specific heat (at constant pressure) Btu/lbs, °F
3 Napierian base (= 2.71826..)
f temperature response parameter; the time required

for a 909 change in the temperature difference on

the linear portion of the curve hr
h surface heat transfer coefficient Btu/hr ft? °F
J,(B,) Nth order Bessel function of first kind for the

argument f3,
7 lag factor (T,—T,)/(Tq~—T,); j.. lag factor at the
geometric center; j,,, lag factor for the mass average;
. Js lag factor at the surface dimensionless
k thermal conductivity Btu/hr ft °F
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L characteristic length of product in the direction of

fluid flow
m mass of product
Ng; Biot number, AR /k
Ng, Fourier number o/R 2

R radius of sphere or infinite cylinder, half the
thickness of infinite siab

r variable position, distance from center of product
to point of measurement

T temperature; T, initial temperature; T, product
temperature; T,, medium temperature; T, the
apparent initial temperature as defined by the linear
portion of the heating curve, that is, the ordinate
value of the asympiote of heating curve; T,
temperature at the geometric center; T,, mass
average temperature; T, surface temperature

t time

over-all heat-transfer coefficient

ft
Ib,,
dimensioniess

dimensionless
ft

ft

°F
hr
Btu/hr ft2 °F

o thermal diffusivity ft2/hr
B,  Nthroot of the boundary equation for the particular
shape
n 3.14159. .
density Ib,, /ft>
APPENDIX
TRANSIENT HEAT CONDUCTION IN INFINITE SLAB
(T-T)) _ ¥ 2.51“ B: cos( B; I\ g~ prarm
(TQ"“‘TI) i=1 ﬁ,“+“ SlnBi COSBE R
root equation :
Ng; = B; tan

st term approximation :

fog (T-T,) _ — PRt 2sin B,
(Te—T;) (In 10)R?
- 2 sin B, ry., fu -
J B, + sin B, cos B, cos(ﬁ‘ R) * R?
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(A.2)

i
log [(Em) cos(ﬁi E)] A3

In 10
Bi

(A1)



2 sin B,

;o eSnp, A.4

Je fpy + sin B, cos P, 9

_ 2sin? B, ny (sin ﬁi) (A.5)
™ By(By +sinP;cosBy) T\ By

. = 2sin’By o B, = j.cospB, (A.6)

a B, + sinp, cosp,

TRANSIENT HEAT CONDUCTION IN INFINITE CYLINDER
(T-T,) = (2) J (B ( ") — B2at/R2 :
Uy 2y LB g T e (A7)
(To—T,) P B 3B+ 3By 'R

root equation :

Ny = B ‘.:IEE‘:)) (A.8)
olb;

Ist term approximation :

- (T-T) _ —Piau Heg{ 2J;(By) JO(BX%)} (A.9)

(To—Ty) (In10)R? B LIZ(B) + J3(B))]
o 2J,(8,) ,(B 5_). fo _In10
B,[J3(B) + BB1 °\'"'R)” R* B}
- 23,(By) p
Je = B LRGY) + B G
. 433(B,) _ 20,8 o
In= TG + BB By (A1
21,(8,)

Jo(B1} = Je Jo(Py) (A.12)

T Bi[IZ(B) + (Y]

TRANSIENT HEAT CONDUCTION IN SPHERE

: I
(1-1,) = v 2(sinp, — B, cos B;) sm(ﬁ‘ R)e— Piat/R2 (A.13)
(Ty—Ty) =1 f;—sinp,cosh;

BAE
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root equation :
NBi = l - B,‘ cot Bi (A. 14)

1st term approximation : (A. 15)

T 2 ; Si“(ﬂ:%)
jog (T-Ty) _ —Biot + log [2-(5‘“'31_51 COSBI)]

(To—T,) (In10)R? B, — sinP, cosp,

; sin(Bl L)
= ['i(smﬁl - By cosﬁl):l R/|. fe _Inlo

B; —sinp, cosP,

j = 2(sinB1'— B, cosp,y) (A.16)
By — sinp, cosp,

g5 = ;—,(sinﬂl — By cosBy) (A.17)
1

. _ | 2(sinB, — B, cosPy) || sinB, | _ , sinp, A.18
A [31 —sinf, cosB, ][ By :I & By ¢ )
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