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SUMMARY : A new approach to the characterization and presentation of the 
conduction transient heat transfer system is introduced. A new term, the temperature 
response parameter, f. that has the unique property of incorporating body and system 
transient heat transfer properties into a single term is described and its use demonstrated. 
Generally, when the Fourier number taJR2 is greater than 0.3 the aperiodic cooling 
curve can be described by the first term approximation and the proposed method of 
presentation has the advantages of suggesting the power of proportionality of the 
parameters with respect to the heat flow, 

Correlation et prevision des taux de transmission de chaleur, eo regime variable, 
dans les produits aJ!maPires. 

REsUME : On pris~nte un~ nouv~/1~ etude sur Ia definition et Ia repris~ntation du 
system~ de transmission de chaleur en regime variahl~. On dicrit un nouveau t~rm~, 
It parametre de ripon.r~ d Ia temperature, f, qui a Ia particulariti de reprisenttr a lui 
s~ul Its propriitu de transmission de chaleur, en regime variable, d'un corps et d'un 
systeme ~~ on precise son utilisation. En giniral, /orsque It module d~ Fourier tar./R 2 

est superieur a 0,3, Ia courbe de refroidissement apiriodiqu~ p~ut ltre reprisentie par 
I~ premi~r terme de Ia sirie et Ia methode de repris~ntation proposie a l'aoantage d~ 
suggirer J'exposant d~ proport/onnaliti des parametres par rapport au flux de chaleur. 

lNTllODUCTION 

There are five groups of variables that must be considered in the transient 
heat conduction system : the dimension parameter of the body, R, and the 
position variable, r; the body properties- thermal conducti~ity, k, and thermal 
capacitance, pc,.; the external film coefficient, h; the time, t; and the temperature 
change of the body, (T1 - T)/(T1-T0). 

A transient heat conduction system usually consists of two basic thermal 
resistances, the external resistance, 1/h, and the internal resistance, R/k. The 
ratio of the internal to the external resistance, hR/k is the Biot number, N81• 

The N81 is a positive number with limits between zero (no internal resistance­
Newtonian system) and infinity (no external resistance). The solution for the 
extreme conditions is simpler than the solution for those cases where both 
resistances enter into the calculations. We can afford to ignore the internal 
resistance (i.e. N81 = 0) when N81 is less than 0.1 or to ignore the external 
resistance (i.e. N81 = oo) when N81 is greater than 100 even though in practice 
these extreme N 81 values of zero or infinity are never actually reached. 

(•) Published with the approval of the Director of the Michigan Aatlcultural Experi· 
ment Station as Journal Article N~ 3834. 
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Many industrial and practical transient heat conduction problems deal 
with the evaluation of temperature profiles. The information obtained from the 
temperature profile can be used for predicting the process time, computing 
the local or overall heating loads for instantaneous or integrated time, or 
evaluating the thermal properties. This information may be used in many 
other cases where prediction of a temperature dependent phenomenon is needed 
such as in solidification and melting, microbial death and chemical reaction. 
These aperiodic transient cooling and heating problems are typical of the 
canning, metallurgical and glass industries. The most common case will be 
that of a body initially at' a uniform temperature, T0 , suddenly exposed to a 
new constant temperature, T 1 • The boundary conditions are : 

T = 1'0 at t = 0 for all r 

at r = 0 

3T 
-k- = h(T-T1) at r=R fort;;:J:O 

Sr 

The exact solution for the three major one dimensional heat flow geometries, 
infinite slab, sphere and infinite cylinder having the above boundary conditions 
are listed in equations A-1, A-17 and A-9. There are a number of graphical 
presentations such as charts of Gurney-Lurie, Hottel and Williamson-Adams 
(McAdams, 1954) of equations A-1, A-9, and A-17 for practical use. Most of 
these charts are plotted as (T 1 - T)/(T 1 - T0 ) vs. the Fourier number, a.t/R 2 

with N81 as the parameter. In the following sections we shall show a new 
approach for the presentation of the above mentioned equations which in 
certain cases has advantages over the conventional methods. 

PRESENTATION OF THE METHOD 

The exact solution for the infinite plate, the sphere and the infinite cylinder 
{equations A-1, A-17 and A-9) all have the following form 

T- T I - ~ . - p>,.,, ... 
---- L. }e ' 
1T0 -.T 1 i=t 

(1) 

After enough time has elapsed the series type solution (equation 1), because of 
its exponential nature, converges rapidly, and all the terms except the first 
become negligible (equation 2) 

T- T I • - ~ ... 1/ 11.2 --- = Je , 
T 0 -T1 

(2) 
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Taking the logarithm of both sides of equation 2 we obtain equation 3, 

(3) 

which produces a straight line if we plot log (T- T 1) vs t. The parameters of 
this line are : 

~2 cx 1 slope= - 1 =-
2.303 R2 f 

intercept = log [j ( T 0 - T 1)] 

Equation 3 describes the asymptote or the straight line portion of the cooling 
curve, generated when the logarithm of the difference in temperature of an 
object, (T- T 1), is plotted vs. time (fig. 1). 
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Fig. I - Cooling curve in convenient fonn for theoretical use, with temperature 
scale expressed in degrees difference between processina temperature Tt and 
temperature of producL 

Figure 1 can be shown to be identical to the common transient heat transfer 
charts mentioned above, where cxt/R 2 is plotted vs. (T-T 1 )/(T 0 - T 1), when 
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the abcissa is multiplied by ct./R 2 and the ordinate divided by (T0 - T1) both 
of which are constants for the system. 

Equation 2 which is the first term approximation of the series solution and 
beyond a certain time is the actual cooling curve can be described by two 
parameters, the temperature response parameter, f. the direction function, and 
the j parameter which is the intercept function. The f of the straight line semi­
logarithmic cooling curve, is independent of the point of measurement since 
the slope term does not contain a position variable. The j term, however, does 
depend on location since it contains the position variable r/R. There are three 
important j's, center, surface and mass average. 

geometric center 

surface 

. 1 fm • d I Jm = - J m, w 1ere m = mass 
m o 

mass avc:rage 

The importance of the various j's is that once the straight line semi­
logarithmic heating curve is established we can determine the lowest (heating) 
or highest (cooling) temperature of the body, the surface temperature and the 
mass average temperature as a function of time by using j,, 1 •• and 1m, 
respectively. 

The temperature response parameter is a very convenient practical term for 
describing the transient system since by single term having a time dimension 
we can describe a 90% change in temperature difference on the linear portion 
of the curve. This term incorporates the thermal properties of the body, its 
geometric characteristic and the thermal properties of the external system, and 
describes the transient heat conduction system just as the overall heat transfer 
coefficient, U, describes the steady-state system. By dimensional analysis of the 
temperature response parameter (Kopelman, 1966) it was shown that the system 
can be described by two dimensional groupsfcx/R 2 and N8 ; . Solutions for other 
isotropic regular shapes may be obtained from those of the infinite slab and/or 
the infinite cylinder for prescribed surface temperature or film coefficients and 
the same initial and boundary conditions. Composite solutions are the product 
of the respective individual direction solution (Carslaw and Jaeger, 1959) given 
by equations A-1, A-9, and A-17, hence for a solid with three dimensional 
heat transfer. 

(4) 

~5) 

The curves in figures 2, 3, 4 and 5 are our method of presenting the fi rst 
term approximation solution and were shown with tables of values first by 
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Pflug et a/. (1965). These figures relate the f and j with the system conditions 
for the three major one dimensional heat ftow geometries, the infinite slab, 
sphere and the infinite cylinder. (As it was mentioned it is possible to combine 
these data to make other solutions for other geometries.) Figure 2 relates the 
ratio fa/R 2 for an infinite slab, sphere and infinite cylinder with the Biot 
number, hR/k. Figures 3, 4 and 5 relate the lag factor j and the Biot number 
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Fig. 2 - Ns1 vsfa./R2 for infinite slab, infinite cylinder and sphere. 

for the infinite cylinder, sphere, and infinite slab; figure 3 for the center of the 
object U,); figure 4 for the point representing the mean temperature of the 
object (j,); and figure 5 for the surface temperature u.>. 

In the evaluation of the transient heat transfer system, where the system 
properties are constant, we have two variables, time and temperature. These 
two variables, time and temperature, appear in the conventional method of 
presentation mentioned above. In our me~hod, by definition, we incorporated 
these two variables into a system property- the temperature response para-
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meter, /. Through the incorporation of these two variables into a system 
property, we are able to describe the system as a function only of its properties. 

In the conventional method of presentation where the uoaccomplished 
temperature change, (T- T 1)/(T0 - T 1) is plotted vs. the Fourier number 
a.t/R 2, a series of lines are generated for each parameter, for example N81 and 
position, r/R. For values of at/R 2 > 0.3 these lines are straight and practically 
indicate a plot of first term approximation. When at/R 2 < 0.3 the lines curve 
showing that first term approximation does not hold. Regardless of the fact that 
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100 

in this low Fourier number region we cannot accurately read (T- T 1)/(T0 - T 1 ), 

it is a marked advantage of these charts to be able to determine, by inspection, 
whether or not we can use the first term approximation. In our method of 
presentation, the figures are already based on the assumption that we are 
dealing with the first term approximation, therefore we must make sure that 
in our system sufficient time has elapsed so that this assumption is valid. On the 
other hand, if the Fourier modulus exceeds 0.3, we believe that our method of 
presentation has advantages, since we can determine which part of the system 
is controlling by visual inspection of the charts. For example, by inspection of 
figure 2 we can see that when the N 111 > 100 the lines of/a./R 2 vs. N 81 approach 
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an asymptotic value which suggests that/is inversely proportional to the thermal 
diffusivity, directly proportional to the square of the characteristic dimension 
and independent of the N 81 or the film coefficient h. Thus an attempt to improve 
the performance of a high N 81 system by improving the film coefficient will 
not be very successful. It is possible to significantly alter the response of the 
body by changing the body characteristic dimension. On the other hand in 
the low N 8 ; system (fig. 2) the curve becomes a straight line of slope = - I, 
where the temperature response parameter is directly proportional to the heat 
capacitance pCP and the characteristic dimension, and inversely proportional 
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Fig. 4 - } .. vs Nst for infinite slab, infinite cylinder and sphere. 

to the film coefficient h. We can summarize this example by saying that mathe­
matically speaking figure 2 shows that going from a high N 81 system to low N81 

system the power of proportionality of the characteristic dimension was 
decreased from 2 to 1 while the power of proportionality of the film coefficient 
was increased from 0 to 1. Similar analysis can be made with respect to the 
relationship of J with respect to N81 shown in figures 3, 4 and 5. Kopelman 
(1966) did a complete analysis of the curves appearing in this presentation. 
The ability to isolate the power of proportionality of the parameters with respect 
to heat flow in the various Biot number regions is both important and convenient 
In the design of an experiment or in the evaluation of the experimental data. 
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EXAMPLE 

A foodproductin slab form 2in. x 12in. x 12in.(5.08cm x30.5cm x 30.5cml, 
k = 0.25 Btu/hr ft °F (0.372 kcal{hr m 0 C), specific gravity 1.00, 
cp = 0.8 Btu/lb °F (0.8 kcal/kg 0 C), is to be cooled from an initial temper-
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Fig. 5 - ). vs Na1 for infinite slab, infinite cylinder and sphere. 

aturc of l00 °F (37.8 °C) to 40 °F (4.5 °C) at the geometric center. The object 
can be cooled either by 35 °F (1. 7 °C) cold water flowing along the surface at 
60ft/min (18.3 m/ min), or by 30°F ( - 1.1 oq cold air flowing along the surface 
at 600 ft/min (183 m/min). Calculate the time required to cool the product to 
a center temperature of 40°F (4.5 °C) and determine its mass average temperature 
when the center reaches 40°F (4.5 °C). Since the ratio between the length or 
the width of the object to its thickness is 6:1, the heat flow will be practically 
one dimensional and the object can be considered to be infinitely long in the 
two other directions. 

The film coefficient h for forced convection, over a fiat plate can be calculated 
using equation 7.41a from Rohsenow and Choi (1961). Under the stated 
conditions the film coefficient is 2.31 and 110 Btufhr ft 2 °F (11.3 and 
537 kcal/hr m 2 oq for the air and water, respectively. The respective N 81 are 
0.77 and 37. From figures 2, 3, 4 and 5 we find that: 
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air 
water 

/a/R 2 

3.9 
0.98 

j, 
1.10 
1.27 

j'" 
0.99 
0.832 

Solving for f we get an f value of 5.42 and 1.36 hr for the air and water. 
respectively. Solving equation 3 for 1 using the appropriate jc we find that the 
time required for the geometric center to reach ~·F (4.5 °C) is 4.82 and 1.65 hr 
for the air and water, respectively. Using the appropriatej..,, the mass average 
temperature, T..,, is found to be 39°F (3.9 °C) and 38.2°F (3.5°C) for the air 
and water, respectively. 

If we double the fluid velocity the corresponding film coefficient will be 
increased approximately by 2°·5 times. Repeating the calculations for this new 
case will show that the corresponding [values wiiJ be 4.32 and 1.36 hr, and the 
time required for the center to reach 40°F (4.5 •q will be 3.86 and 1.65 hr for 
the air and the water, respectively. 
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NOTATION 

specific heat (at constant pressure) 
Napierian base ( = 2. 71826 .. ) 

f temperature response parameter; the time required 
for a 90% change in the temperature difference on 
the linear portion of the curve 

h surface heat transfer coefficient 
JNO~,) Nth order Bessel function of first kind for the 

argument 13, 
j lag factor (T" - T I )/(T 0- T I); j c• lag factor at the 

geometric center ;j,.. ,lag factor for the mass average; 
1 •• lag factor at the surface 

k thermal conductivity 

Btu/Ibm °F 

dimensionless 
Btu/hr ft °F 
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L characteristic length of product in the direction of 
fluid ftow ft 

m mass of product Ibm 

N 81 Biot number, hR/k dimensionless 

NFo Fourier number ctt/R 2 dimensionless 

R radius of sphere or infinite cylinder, half the 
thickness of infinite slab ft 

r variable position, distance from center of product 
to point of measurement ft 

T temperature; T 0 , initial temperature; T, product 
temperature; T 1, medium temperature; T0 , the 
apparent initial temperature as defined by the linear 
portion of the heating curve, that is, the ordinate 
value of the asymptote of heating curve; Tc, 
temperature at the geometric center; T m• mass 
average temperature; T,. surface temperature °F 

time hr 

u over-all heat-transfer coefficient 

thermal diffusivity 

Btu/hr ft 2 °F 

ft 2 /hr 

7t 

p 

Nth root of the boundary equation for the particular 
shape 

3.14159 . . 

density 

APPENDIX 

TRANSIENT HEAT CONDUCTION IN INFINITE SLAB 

root equation : 

1st term approximation : 

(A. 1) 

(A.2) 

tOg = + og cos ..,, - ( . , (T-T,) -Pict.t I [( 2sinp, ) (a ~")] A J) 
(T0 - T 1) (In 10) R 2 13 1 +sin p, cos 131 R 

. 2 sin ~ 1 (a r) J = cos ... , - ; 
13 1 + sin j31 cos j3 1 R 
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. 2 sinj3 1 

Jc = j31 + sin ~1 cos j3 1 

(A.4) 

2 sin
2 ~~ . (sin 13 1) 

J m = 13t (j3, + sin Pr cos Pt) = .lc T (A.5) 

(A.6) 

TRANSIENT HEAT CONDUCTION IN INFINITE CYUNDER 

(A. 7j 

root equation : 

(A.8) 

1st term approximation : 

fa. lnlO 
R2 = Pi 

. 2JtCI3t) 
.I c = p, [J ~ CP I )·...0.:+--'-'--:Ji-CP-,-)] (A. lO) 

4Jf(Pt) . 2J, (p,) 
jm = -j}f:-[-J-=-~-(IJ-1) + Jf{j3,)] = Jc -j3-,- (A.ll) 

(A. 12) 

TRANSIENT HEAT CONDUCTION IN SPHERE 

(A.l3) 
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root equation : 

1st term approximation : 

. 2(sin~ 1 - ~~ (;OS~t) 
Jc = A ' A A 

..,1 - sm t'l cos t't 

100 

fa. lulO 
Rl = M 

(A.14) 

(A. 15) 

(A. l6) 

(A. 17) 

(A.18) 


